Monday, September 15, 2008

Control components in Hydraulic system

One of the most important functions in any fluid power system is control. If control components are not properly selected, the entire system will fail to deliver the required output. Elements for the control of energy and other control in fluid power system are generally called “Valves”. It is important to know the primary function and operation of the various types of control components. This type of knowledge is not only required for a good functioning system, but it also leads to the discovery of innovative ways to improve a fluid power system for a given application
The selection of these control components not only involves the type, but also the size, the actuating method and remote control capability. There are 3 basic types of valves.
1. Directional control valves
1. Pressure control valves
2. Flow control valves.
Directional control valves are essentially used for distribution of energy in a fluid power system. They establish the path through which a fluid traverses a given circuit. For example they control the direction of motion of a hydraulic cylinder or motor. These valves are used to control the start, stop and change in direction of flow of pressurized fluid.
Pressure may gradually buildup due to decrease in fluid demand or due to sudden surge as valves opens or closes. Pressure control valves protect the system against such overpressure. Pressure relief valve, pressure reducing, sequence, unloading and counterbalance valve are different types of pressure control valves.
In addition, fluid flow rate must be controlled in various lines of a hydraulic circuit. For example, the control of actuator speeds depends on flow rates. This type of control is accomplished through the use of flow control valves.

Directional control valves
As the name implies directional control valves are used to control the direction of flow in a hydraulic circuit. They are used to extend, retract, position or reciprocate hydraulic cylinder and other components for linear motion. Valves contains ports that are external openings for fluid to enter and leave via connecting pipelines, The number of ports on a directional control valve (DCV ) is usually identified by the term “ way”. For example, a valve with four ports is named as four-way valve.



Directional control valves can be classified in a number of ways:
1. According to type of construction :
• Poppet valves
• Spool valves
2. According to number of working ports :
• Two- way valves
• Three – way valves
• Four- way valves.
3. According to number of Switching position:
• Two – position
• Three - position
4. According to Actuating mechanism:
• Manual actuation
• Mechanical actuation
• Solenoid ( Electrical ) actuation
• Hydraulic ( Pilot ) actuation
• Pneumatic actuation
• Indirect actuation

1. Poppet Valves: Directional poppet valves consists of a housing bore in which one or more suitably formed seating elements ( moveable ) in the form of balls, cones are situated. When the operating pressure increases the valve becomes more tightly seated in this design. The main advantage of poppet valves are;
- No Leakage as it provides absolute sealing.
- Long useful life, as there are no leakage of oil flows.
- May be used with even the highest pressures, as no hydraulic sticking (pressure dependent deformation ) and leakages occurs in the valve.
The disadvantages of these valves are;
- Large pressure losses due to short strokes
- Pressure collapse during switching phase due to negative overlap ( connection of pump, actuator and tank at the same time ).

2. Spool valves: The spool valve consists of a spool which is a cylindrical member that has large- diameter lands machined to slide in a very close- fitting bore of the valve body. The spool valves are sealed along the clearance between the moving spool and the housing. The degree of sealing depends on the size of the gap, the viscosity of the fluid and especially on the level of pressure. Especially at high pressures ( up to 350 bar) leakage occurs to such a extent that it must be taken into account when determining the system efficiency. The amount of leakage is primarily dependent on the gap between spool and housing. Hence as the operating pressure increases the gap must be reduced or the length of overlap increased. The radial clearance is usually less than 20 Microns. The grooves between the lands provide the flow passage between ports.


Friday, August 1, 2008

Displacement diagrams

Displacement diagrams: In a cam follower system, the motion of the follower is very important. Its displacement can be plotted against the angular displacement θ of the cam and it is called as the displacement diagram. The displacement of the follower is plotted along the y-axis and angular displacement θ of the cam is plotted along x-axis. From the displacement diagram, velocity and acceleration of the follower can also be plotted for different angular displacements θ of the cam. The displacement, velocity and acceleration diagrams are plotted for one cycle of operation i.e., one rotation of the cam. Displacement diagrams are basic requirements for the construction of cam profiles. Construction of displacement diagrams and calculation of velocities and accelerations of followers with different types of motions are discussed in the following sections

(a) Follower motion with Uniform velocity:

(b) Follower motion with modified uniform velocity:

(c) Follower motion with uniform acceleration and retardation (UARM):


(d) Simple Harmonic Motion:


(e) Cycloidal motion:


Types of follower motion

Cam follower systems are designed to achieve a desired oscillatory motion. Appropriate displacement patterns are to be selected for this purpose, before designing the cam surface. The cam is assumed to rotate at a constant speed and the follower raises, dwells, returns to its original position and dwells again through specified angles of rotation of the cam, during each revolution of the cam.
Some of the standard follower motions are as follows:
They are, follower motion with,
(a) Uniform velocity
(b) Modified uniform velocity
(c) Uniform acceleration and deceleration
(d) Simple harmonic motion
(e) Cycloidal motion


CAMS


CAMS
INTRODUCTION A cam is a mechanical device used to transmit motion to a follower by direct contact. The driver is called the cam and the driven member is called the follower. In a cam follower pair, the cam normally rotates while the follower may translate or oscillate. A familiar example is the camshaft of an automobile engine, where the cams drive the push rods (the followers) to open and close the valves in synchronization with the motion of the pistons. Types of cams Cams can be classified based on their physical shape. a) Disk or plate cam: The disk (or plate) cam has an irregular contour to impart a specific motion to the follower. The follower moves in a plane perpendicular to the axis of rotation of the camshaft and is held in contact with the cam by springs or gravity.
b) Cylindrical cam : The cylindrical cam has a groove cut along its cylindrical surface. The roller follows the groove, and the follower moves in a plane parallel to the axis of rotation of the cylinder.
c) Translating cam The translating cam is a contoured or grooved plate sliding on a guiding surface(s). The follower may oscillate or reciprocate . The contour or the shape of the groove is determined by the specified motion of the follower.
Types of followers:
(i) Based on surface in contact.
(a) Knife edge follower
(b) Roller follower
(c) Flat faced follower
(d) Spherical follower
(ii) Based on type of motion:
(a) Oscillating follower
(b) Translating follower
(iii) Based on line of motion:
(a) Radial follower: The lines of movement of in-line cam followers pass through the centers of the camshafts.
(b) Off-set follower: For this type, the lines of movement are offset from the centers of the camshafts.

Quick return motion mechanisms

Quick return mechanisms are used in machine tools such as shapers and power driven saws for the purpose of giving the reciprocating cutting tool a slow cutting stroke and a quick return stroke with a constant angular velocity of the driving crank. Some of the common types of quick return motion mechanisms are discussed below. The ratio of time required for the cutting stroke to the time required for the return stroke is called the time ratio and is greater than unity.



Kinematic chain

Kinematic chain: A kinematic chain is a group of links either joined together or arranged in a manner that permits them to move relative to one another. If the links are connected in such a way that no motion is possible, it results in a locked chain or structure.

Constrained motion

Constrained motion: In a kinematic pair, if one element has got only one definite motion relative to the other, then the motion is called constrained motion.

(a) Completely constrained motion. If the constrained motion is achieved by the pairing elements themselves, then it is called completely constrained motion.

(b) Successfully constrained motion. If constrained motion is not achieved by the pairing elements themselves, but by some other means, then, it is called successfully constrained motion. Eg. Foot step bearing, where shaft is constrained from moving upwards, by its self weight.

(c) Incompletely constrained motion. When relative motion between pairing elements takes place in more than one direction, it is called incompletely constrained motion. Eg. Shaft in a circular hole.